Revisiting Individual Discipline Feasible using matrix-free Inexact-Newton-Krylov
نویسندگان
چکیده
The individual-discipline-feasible (IDF) formulation was proposed to simplify the implementation of MDO problems. The IDF formulation introduces coupling variables into the optimization problem that eliminate the need for a full multidisciplinary analysis at each optimization iteration; this simplifies the solution of MDO problems by maintaining modularity of the discipline software. Historically, the MDO community has used conventional optimization algorithms to solve IDF-formulated problems. Conventional optimizers are not well suited to IDF, because they use limited-memory quasi-Newton methods (linear convergence) and require the constraint Jacobian explicitly. The cost of computing the coupling-variable constraint Jacobian is prohibitively expensive for high-fidelity IDF problems. Matrix-free Reduced-Space inexact-Newton-Krylov (RSNK) algorithms overcome these issues, because they scale superlinearly and do not require the constraint Jacobian explicitly. Therefore, this class of algorithm has great potential to solve IDF-formulated MDO problems in a scalable and efficient manner. In this paper, we describe the application of RSNK to the IDF formulation and compare its performance to the multidisciplinary feasible architecture.
منابع مشابه
A Multigrid-Preconditioned Newton-Krylov Method for the Incompressible Navier-Stokes Equations
Globalized inexact Newton methods are well suited for solving large-scale systems of nonlinear equations. When combined with a Krylov iterative method, an explicit Jacobian is never needed, and the resulting matrix-free Newton–Krylov method greatly simplifies application of the method to complex problems. Despite asymptotically superlinear rates of convergence, the overall efficiency of a Newto...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملA Three-Dimensional Multi-Block Newton-Krylov Flow Solver for the Euler Equations
A three-dimensional multi-block Newton-Krylov flow solver for the Euler equations has been developed for steady aerodynamic flows. The solution is computed through a Jacobian-free inexact-Newton method with an approximate-Newton method for startup. The linear system at each outer iteration is solved using a Generalized Minimal Residual (GMRES) Krylov subspace algorithm. An incomplete lower/uppe...
متن کاملSemilocal and global convergence of the Newton-HSS method for systems of nonlinear equations
Newton-HSS methods, that are variants of inexact Newton methods different from Newton-Krylov methods, have been shown to be competitive methods for solving large sparse systems of nonlinear equations with positive definite Jacobian matrices [Bai and Guo, 2010]. In that paper, only local convergence was proved. In this paper, we prove a Kantorovich-type semilocal convergence. Then we introduce N...
متن کامل